\qquad

Goal: Construct mathematical models of situations which are quadratic in nature.

Warm Up: in 20010, Hafiz bought a US bond for $\$ 250$ which pays out 3.1% APR for 10 years. How much will it be worth when he cashes it out next year?

Questions

Review Quadratic Function Properties

A quadratic function is an equation that can be put in the form
\qquad . The basic shape is a . If $a>0$, then \qquad and
\qquad . If $a<0$, then \qquad
and \qquad . The domain is and the range is the max/min point, depending
on direction of the graph. c is always the \qquad —.

The x-intercepts are the \qquad and only exist when \qquad and can be found by

Quadratic Formula:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. vertex can by found by using $x=-\frac{b}{2 a}$.
 The

Questions

Example 1: Consider the function f with equation $f(x)=-3 x^{2}-4 x+7$.
a. Find the x - and y-intercepts.
b. Find the vertex. Is it a max or min?

Using Known Quadratic Models

A common formula in physics to calculate the height, h, of an object after time, t, can be found using $h=-\frac{1}{2} g t^{2}+v_{0} t+h_{0}$, where g is
\qquad or \qquad v_{0} is \qquad
and h_{0} is \qquad .

Example 2: A ball is thrown upward from a height of 15 m with initial velocity $20 \mathrm{~m} / \mathrm{sec}$.
a. Find the relation between the height h and time t after the ball is released.
b. How high is the ball after 3 seconds?
c. When will the ball hit the ground?

How can we solve these using TI?
Example 3:
A projectile is shot from a tower 10 feet high with an upward velocity of 100 feet per second.
a. Approximate the relationship between height h (in feet) and time t (in seconds) after the projectile is shot.
b. How long will the projectile be in the air?
 hundredths.

Example 5: The parabola to the right contains
$(-0.1,-16.32),(2,3)$ and $(6,-9)$. Find its equation.

Example 6: The following table contains data that might be collected by farmers interested in increasing the weight of their pigs. Suppose twenty-four randomly selected pigs were each given a daily dosage (in pellets) of a food supplement. Each group of three pigs received a dosage from 0 to 7 pellets, and the average percent weight gain for each group was recorded. The table below shows the average percent weight gain for each group of three pigs in relation to the number of pellets they were given daily.

Dosage (pellets)	0	1	2	3	4	5	6	7
Percent Weight Gain	10	13	21	24	22	20	16	13

Summary:

