AAT
2-6 Quadratic Models

Name ______ A#11

Goal: Construct mathematical models of situations which are quadratic in nature.

Warm Up: in 20010, Hafiz bought a US bond for \$250 which pays out 3.1% APR for 10 years. How much will it be worth when he cashes it out next year?

Which Model is Which?

	Linear	Exponential	Quadratic	
When to use				
Basic Shape				
Review Quadratic Function Properties				
A quadratic function is an equation that can be put in the form				
The basic shape is a				
	\dots If $a > $	0 , then	and	
	If $a < 0$, thenia		
and I ne domain is				
		the max/min	noint depending	
on direction of the graph. <i>c</i> is always the				
The <i>x</i> -intercepts are the and only exist			and only exist	
when and can be found by				
t	he			
Quadratic Formul	a:			
$x = \frac{-b \pm \sqrt{b^2 - 4aa}}{2a}$	<u>c</u> .	The -2	0 2	
vertex can by four using $x = -\frac{b}{2a}$.	nd by	2	2	

Questions

Questions			
	Example 1: Consider the function <i>f</i> with equation $f(x) = -3x^2 - 4x + 7$.		
	a. Find the <i>x</i> - and <i>y</i> -intercepts. b. Find the vertex. Is it a max or min?		
	Using Known Quadratic Models A common formula in physics to calculate the height, <i>h</i> , of an object		
	after time, <i>t</i> , can be found using $h = -\frac{1}{2}gt^2 + v_0t + h_0$, where <i>g</i> is		
	v_0 is, v_0 is,		
	and <i>n</i> ₀ is		
	<u>Example 2</u> : A ball is thrown upward from a height of 15 m with initial velocity 20 m/sec.		
	a. Find the relation between the height <i>h</i> and time <i>t</i> after the ball is released.		
	b. How high is the ball after 3 seconds?		
	c. When will the ball hit the ground?		
	How can we solve these using TI?		
	Example 3: A projectile is shot from a tower 10 feet high with an upward velocity of 100 feet per second.		
	a. Approximate the relationship between height h (in feet) and time t (in seconds) after the projectile is shot.		
	b. How long will the projectile be in the air?		

Summary: